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Abstract

The effect on beam—pendulum response of cable flexibility is studied. The system is forced at its base by a prescribed
damped periodic oscillation. Response from cable tension is estimated at a delayed time step from known variables
computed at a previous time step in a linear modal analysis. The effects of base excitation and force from cable flexibility
are included adopting the static—dynamic superposition method. Two distinct non-dimensional parameters x, and g,
control the linear modal response of beam and pendulum. Unlike periodic excitation where the pendulum may be used as
an absorber of energy, in transient response the conditions leading to absorption do not apply. Even for large pendulum
swings, cable flexibility has a negligible effect on flexural response considering that cable tension dominated by high
frequencies is larger than the shear force Q. it transmits at the beam-free end. Contrary to its effect on flexure, cable
flexibility induces a high-frequency axial force comparable to Q.. ;.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The model of a flexible beam coupled to a pendulum is often considered as an approximation to large
flexible structures with an appendage. Crespo et al. [1] studied the effect of approximations on the dynamic
response of a cantilever with tip mass. Cuvalci [2] and Ertas and Cuvalci [3] studied the nonlinear absorber
with varying orientation. Yaman et al. [4] studied a cantilever beam with tip-mass and pendulum adopting
finite elements. For sinusoidal excitation, energy transfer between beam and pendulum is largest at the auto-
parametric condition, implying that the pendulum may act as a vibration absorber. Yaman and Sen [5] and
Yaman and Sen [6] treated the same problem simplifying the beam—pendulum to a 2-degree-of-freedom
oscillator to investigate the effect of pendulum orientation on its effectiveness as a vibration absorber. Cicek
and Ertas [7] studied experimentally the coupled system under random excitation. Dumas et al. [8] studied
experimentally the performance of a 3-stage low-frequency vibration isolation chain made of vertical Euler-
spring and a self-damped pendulum. Mikhlin and Reshetnikova [9] studied the nonlinear 2-degree-of-freedom
system of a massive linear oscillator and a light nonlinear oscillator acting as an absorber to the former
adopting nonlinear normal modes. Oguamanan et al. [10] and Oguamanan and Hansen [11] studied the
dynamic response of an overhead crane system. Ju et al. [12] studied linear dynamic response of tower cranes
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coupled with the pendulum motions of the payload adopting finite elements for the tower crane and rigid-
body kinetics for the pendulum. Their analysis concludes that the lowest tower and pendulum modes
dominate response, and that nonlinearity is week for planar pendulum motions. Yang et al. [13] studied the
dynamics of a slewing flexible beam attached to a pendulum.

All references above treat linear and nonlinear periodic motions. The present study considers transient
response of a vertical cantilever beam—pendulum system from prescribed base motion adopting a modal
decomposition. Prescribed motion at the base is included utilizing the static-dynamic superposition method
[14,15]. Modal response relies on two non-dimensional parameters: a beam wave number k, =
lb(mba)g/(EbI;,))l/4 and a mass ratio p, = myly/m,, where E,I;, is flexural stiffness, /, is length, m;, is mass
per unit length, and m,, w, are pendulum mass and frequency. Curves of system resonances versus i, with y,
as parameter reveal the strong influence the first 2 modes have on response. The lowest of this dyad is a beam
dominant mode with frequency below w,, while the second is a pendulum dominant mode with frequency
above w,. Unlike periodic excitation where the pendulum may be used as an absorber of energy, in transient
response the conditions leading to absorption do not apply.

For long slender beams, the effect of cable flexibility and inertia is evaluated adopting a time-delayed
method. Since the driving force of these motions along the cable is the nonlinear centrifugal force, response of
the cable is computed at some time step ¢ based on the centrifugal force determined from a previous time step
t—At. This time-delayed cable tension then acts as an external concentrated body force at the beam-free end,
appearing as an inhomogeneity in the beam equation of motion. The effect on beam extensional response of
cable flexibility is then evaluated by solving the coupled beam—cable extensional equations from a time-
delayed centrifugal excitation.

2. Coupled beam—pendulum

The 1-D Euler equations and boundary conditions of a cantilever beam with a pendulum pivoted at its free
end are (see Fig. 1(a) and Appendix A):

EpIpOyxw + mpW = p,(x,0);  —1p/2<x<1p/2, (1a)
wo=0, wy=0, wy=w(—Iy/2), (1b)
wi =0, Eppyw] =mpl,p, wp=w(l/2), (Ic)

7

Fig. 1. Geometry of beam—pendulum: (a) clamped beam on fixed base and (b) clamped beam on moving base.
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o+ lp =twr/le, ©,=/g/l. (1d)

where (-) is derivative w.r.t. time ¢, x the axial coordinate, ( )’ is derivative w.r.t. x, /, the beam length,
E,, I, are Young’s modulus and cross-sectional moment of inertia, my, the mass per unit length, w the
lateral displacement, ¢ the angle between undeformed beam axis B-A and radial vector r along (B-C)
from the undeformed free end B to the displaced pendulum mass C (Fig. 1(a)), g the acceleration of
gravity, /. the length of the inextensional massless cable, m, the pendulum mass, and p,(x, f) the applied
lateral distributed load per unit length. Boundary conditions (1b) apply to clamping at the fixed base,
while boundary conditions (1c) apply to the free end connected to a pendulum whose motion is governed
by Eq. (1d). For harmonic motions in time with radian frequency w, the homogeneous Eqgs. (1a) and (1d)
admit a solution

o 4 A A A ~
W= A, ki =ik, kya=+k, 1=V, (2a)

n=1
kiy =1 =1 (7711;602/(15*717117))1/4 = koly@'?, (2b)

]201[, = lb(m;,a)i/(EbIb))IM, o= w/a)u
¢ = wi /(11— ). (20)
This reduces the second boundary condition in Eq. (1¢) to
(1 — @) mply Jmy) [ (kolyd" W JE + wp = 0. (3)

It is clear from Eqgs. (2) and (3) that there are 3 distinct non-dimensional parameters controlling free
dynamic motion

o = kol = I (msor? /(EoI3) ™ = Kl = 1 = 1,652, (42)
W = mply/my, (4b)
D =w/w, (4¢)

for wave number, mass, and frequency, respectively. Substituting Eq. (2) in Egs. (1b) and (Ic) yields the
eigenproblem

MA =0, A={A, A4, A3, 44}7 = det|M| =0,

o A, o o4
lgle_‘“l Igze_“Z 1€3e_“3 l€4e_°‘4
M= lge“l kye™ I€§e“3 lgie“4 ’
(BE, + Dert (BB + e (B + Dems (BR, + e
o =kaly /2, e =hnfk, = (1=, /(,00'?). (5)

Eq. (5) determines the eigenset {w; Y{x)}. Forced response from p,(x, t) proceeds adopting the modal
expansion

W, 1) =Y aj(Oy(x). (6)
J
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where aj(t) are generalized coordinates. Substituting Eq. (6) in Eq. (1a) and enforcing orthogonality of ;
yields

(1) + wjai(t) = Ny(1), N = Ny(t)/Ny,

1,2
Nyl = / Pl

Ip

/2 2
Ny=m [ | pedsm, (v ts/2/01 =) )
A p,(x, t) in the form
polv. ) = (H(x — x1) — H(x — x2)f (1) ®)

simplifies Nj;in Eq. (7) to Ny(t) = f(t)N,; where N; = f:lz ;(x)dx and H(x) is the Heaviside function. Eq. (7)
then admits the solution

a;(t) = Ay sin(w;1) + By cos(w;t) + (N, /(Njw;)) /0 f(@)sin(w;(t — 1)) dr. ©)

Constants A4,,, B,; are determined from the initial conditions w(x, 0), w(x, 0).

If the base moves laterally with prescribed displacement w,(¢) (see Fig. 1(b)) with p,(x, t) = 0, the method of
static-dynamic superposition is employed. w(x, f) is expressed as the sum of a dynamic solution w,(x, )
satisfying homogeneous boundary conditions and a static solution w(x) satisfying inhomogeneous boundary
conditions:

w(x, 1) = wa(x, 1) + wi(x)f (2), (10)

where f{¢) is time dependence of the displacement prescribed at the base. Consequently, w(x, ?) satisfies the
same boundary conditions as in Egs. (1b) and (1c) at both ends:

wao =0, W,o =0, wap =wi(=1p/2), (11a)
wi, =0,  Eppwl, =mpl,,  war = wa(lp/2). (11b)

wi(x) satisfies the static equation
OxxxxWs = 0 (12)

with boundary conditions
wo =1, wiy =0, we=wi(-1/2), (13a)
wi, =0, wi =0, wy=wlp/2). (13b)
Solving Eq. (12) with boundary conditions Eq. (13) yields

ws(x) = 1. (14)

Eq. (14) specifies a rigid body translation.
Expanding w,(x, ?) in its eigenfunctions 1/(x) following the same steps that lead to Eq. (5):

4
wale, 1) =Y a(OW(x), 0 =Y Ay, —1,/2<x<1;/2. (15)
J n=1

In Eq. (15), k,; is defined in Eq. (2a) for the jth eigenfunction. Substituting Eq. (9) in the homogeneous form
of Eq. (la) and enforcing orthogonality of y/(x) produces

aj(0) + wa(0) = —Nyf (1),

N 1p/2 1,/2

Npj = (Npj/Njj), Np = mb/ / ws();(x) dx = my / y(x)dx. (16)
—1/2 —Iy/2
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Nj; is defined in Eq. (7). The solution to Eq. (16) takes the form

t
aj(t) = A; sin(w;t) + B; cos(w;t) — (]\7;,_//@/)/ S (@) sin(w;(t — 1)) d. (17)
0
Constants A4;, B; are determined from the initial conditions
w(x,0) =0, w(x,0)=0. (18)
Substituting Eq. (9) in Eq. (18) yields
Aj = ~Ny/0)f (0), B = =Ny (0). (19)
For a base undergoing damped periodic motions of the form
S(0) = ape™ " sin(wp)[H(1) — H(t — t,)], (20a)
J(0) = aye™ (a2 cos(apt) = Ly sin(p1)), (20b)
F(t) = apeo" [(@f _ gg) sin(wpt) + 2050, cos(w;,t)], (20¢)

then f{0) = 0 and £(0) = aywy.
3. Cable flexibility

For a long elastic cable and large m,, the effect on transmitted force at the pivot from extensional motions
of the cable is considered. These motions are driven by the nonlinear centrifugal force from pendulum sway
(see Appendix A, Eq. (A.4a)). Coupling of cable flexibility to beam flexure is presented first, followed by
coupling to beam extension.

3.1. Coupling to beam flexure

To include this effect in the linear flexural treatment of Section 1, a time-delayed approximation is adopted
in the integration of the generalized coordinates Eq. (16). Consider an elastic cable fixed at the pivot end and
attached to the mass m, at its other end. The cable extentional equation of motion and boundary conditions
are

EcAcarruc + pcAcattuc =0, OSVSZE,
u0,0) =0, E.ALQucl., 1)+ mpattuc(lc, H=F.()= mplc§b2» (21)
where r is the coordinate along the cable, E,, p., 4. are cable modulus, density and cross-sectional area, u,. is

elastic displacement, and F, is centrifugal force. To solve Eq. (21), apply the static—-dynamic superposition
procedure utilized in Section 1. Express u.(r, f) as the sum of a dynamic solution u.(r, t) and a static solution

Ues(1)
uc(r, 1) = uea(r, ) + ues(rF (1),
uq(0,6) =0, E.AQucqa(le,t) + myduuca(le,t) =0,
us(0)=0, E. Al u.l.)=1. (22)

For harmonic motions in time with frequency w, the solution to u., and dispersion relation satisfying Eq.
(22) are:

Ueg(r, 1) = sin(kcr)ei‘”’, ke=w/ce, ce=Ec/p.,
(EcAc/mpl.) cos(k ) — o sin(k.l.) = 0. (23)
The solution to u. is
ues(r) = r/(E.A.). (24)
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Expanding u,., in its eigenfunctions

u(le'(r: Z) = Z acj(t)lpq‘(r)y lp(j(r) = Sil’l(k(j}’),
J

then substituting Egs. (22)—(25) in Eq. (21) yields
ac/(l) + nga(t) = _N(‘bjﬁz’(l)a N(‘bj = (N(‘bj/NC//)a

le le
Ncbj = pcAc /0 ucs(r)wcj(r) dl’, N(‘/j = PcAc o lﬂfj(l’) dr + mpwfj(lc)

The solution to Eq. (26) takes the form

Clq'(l) = Aq' Sil’l((,l)cjl) + Bcj COS(COC/Z‘) — (pr//a)q)/o FC(’L') sin (CUCj([ — ‘E)) dr.

Constants A, B,; are determined from the initial conditions
u(r,0) =0, u.r,0)=0.
Substituting Eq. (22) in Eq. (28), with use made of Eq. (24) and Eq. (25) yields
ch = _(Ncbj/wq')Fc(O)a Bcj = _Ncbch(O)~

The incremental dynamic tension in the cable follows:

AT (r,0) = EcA: Y a0, (r) + Fo(0).
J

cj>

In turn, the incremental shear force at the pivot is
AQ . (1) = AT (0, )(2).
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(25)

(26)

27)

(28)

(29)

(30a)

(30b)

Since AQ,,. is a nonlinear function of ¢, it can be included in the linear analysis assuming that AQ,,. is a

po(x7 t) = 5()&' - lb/z)AQxxc(t - At)

known external body force from an earlier time step t—At during the numerical integration. This means that in
Eq. (1a) the body force p,(x, ?) at time step ¢ is related to AQ,. by

1)

o(x) is Dirac’s delta function. This adds a term to the particular integral of Eq. (17) similar to the one in Eq.

ai(t) = 4; sin(w;1) + B; cos(w;t) — (Np; /o)) /0 f(@)sin(w;(r — 1)) dt

t—At
+ (Bt/2/WNy0)) [ A0 @ sin( = o) e

3.2. Coupling to beam extension

The coupled extensional equations of beam and cable are:

EpApQyyuy — ppApluup =0, 0<x<p,
E A0u, — p,A0uu, =0, 0<r<li,
up(0,7) =0,
up(lp, 1) = uc(0, 1),
EyAp0up(ly, ) = E.A0,u.(0,1),

E.A0uc(le, ) + mpduuc(le, t) = F(2).

(32)

(33a)
(33b)
(33¢)
(33d)
(33¢)
(33f)
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Egs. (33a) and (33b) are the extensional equations for beam and cable, respectively, where x is a coordinate
along the beam with origin at the fixed end, r is coordinate along the cable with origin at the pivot x = [, p,,
A, are beam density and cross-sectional area, and u,, u. are axial displacements of beam and cable. Eq. (33c) is
beam fixed end condition, Eqgs. (33d) and (33e) are continuity of displacement and axial force at the
beam—cable junction, and Eq. (33f) is dynamic equilibrium of pendulum mass and cable tension forced by F.(¢)
the centrifugal force along r from pendulum swing.

For harmonic motions in time with radian frequency w, the solutions to Egs. (33a) and (33b)) satisfying
Eqgs. (33¢)—(33e) are:

up(x,t) = c; sin(kepx)e

lw' key = 0/cps oy = /Eb/pp»
uc(r, 1) = (c3 sin(kecer) + ¢4 cos(kecr))ei“”, kee = ®/Cecy  Coc = Ec/pos
c3 = ¢ sintkeplp),  ca = c1f. cos(keply), Bo = EpApcec/(EcAcCep)- (34)
Substituting Eq. (34) in Eq. (33f) yields the dispersion relation
oe(Bocspese — snpsn.) — (Bycspsne + snpes.) =0, o, = EcAck@C/(m,,wz), (35)

where c¢s, sn stand for cos and sin while subscripts b and ¢ stand for (k.;/;) and (k..l.). Eq. (35) determines the

eigenset {/,,(X), ¥, (r); wec};.
Since F.(¢) is an inhomogeneity in boundary condition Eq. (33f), express u;, and u, as

up(x, 1) = Z /(O 4(X) + tup(X)F ().
ur, 1) = Z /(D o (r) + thes(r)F (D),

ubs(x) = x/EbAbs ucs(r) = Ib/EbAb + r/EcAc- (36)

ups and u,g are static solutions satisfying the inhomogeneous boundary condition Eq. (33d) with F,. = 1.
Substituting Eq. (36) in Egs. (33a) and (33b) and enforcing orthogonality of the eigenfunctions determines
equations in a,[(t) with solution

t
aej(t) = Aej SiIl(COeq‘f) —+ Bej COS((H&J'Z‘) — (Ne/,j/(Nejjcoeq)) /0 F(,‘(‘C) sin(weq-(t — ‘E)) dt

le

Iy
Ney = ppAs / Uy () A + poA, / s (P )
0

Noy = pyds / Y2,(x) dx + p, A mc](r) dr + my,(0).

Aej = - (Neb/'/Nejj)Fc(O)/wecja e/ = (Neb//Neu)F 0). (37)

4. Results

Fig. 2 plots the first 3 modes of the clamped beam for u, = 50 and x, = 1.98. Note that only the first two
resonances include motions of the pendulum. The first mode describes a pendulum dominant motion w,, that is
in phase with the beam w. The second mode describes a w-dominant motion that is out-of-phase with w,,. This
mode dyad exists independent of u, and k,. Starting with the third mode, the pendulum mass is almost
motionless and the beam motion is the same as that of the lone beam. Consequently, the effect on response of
the pendulum is primarily from the first mode dyad.

Fig. 3 plots the non-dimensional modal variables with wave number parameter r, for the first 3 modes and
for 2 values of y,: 50 and 5. For small «,, @; ~ 1 while @, drops smoothly till k,~2 near the coalescence of
these 2 lines (Fig. 3(al)). At that stage, the @; line changes path following that of the @, line and continues
dropping smoothly with x,, while the @, line changes its path to that of the &; line close to @, ~ 1.
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Fig. 2. Mode shapes: u, = 50, x, = 1.98; (a) mode 1 w;/wy = 0.81, (b) mode 2 w,/wy = 1.11, and (c) mode 3 w;/w, = 5.61.

This change in path and the nature of the mode are repeated when the @; and @; lines approach their
coalescence at k,~4.5. The reason for this change in path near coalescence stands on the uniqueness of the
linear eigenstates insuring that different eigenfunctions cannot have the same frequency. Near coalescence of
@ and @;, the frequency separation between these 2 resonances is smallest and this condition may affect
forced response by enabling energy transfer between the 2 modes.

Fig. 3(bl) plots «/x for the first 3 modes. For small «,, the k; line rises almost linearly then changes path
near coalescence with the k5 line then follows a constant value of 0.6, the first cantilever mode of the lone
beam. At this point, the x, line continues along the x; line before coalescence, till it approaches coalescence
with the x5 line, and then follows a constant value of 1.5, the second cantilever mode of the lone beam.

Fig. 3(cl) plots w;/w,,,. Note the smooth transition of the second mode line from +1 to —1 prior to the
second coalescence point. Fig. 3(d1) plots log,o(¢l,/w,.,). Note that the first and second lines intersect near the
first coalescence, while the second and third lines intersect near the second coalescence. Near these points,
pendulum amplitude of the first dyad achieves a minimum.

Fig. 3(a2—d2) plots the non-dimensional variables for u, = 5. Comparing corresponding lines for the two
u,’s reveals a similar behavior except that for u, = 5, separation between the lines near coalescence is wider,
and log;o(@l./w,.,) near the first coalescence is smaller (see Fig. 3(a2) and (d2)).

Since modal variables are unique near k,~ 2, properties leading to that value are considered in the example
to follow:

Eply=574Nm?, ly=1I.=5m, my=07Tkg/m, m,=007ke.

These properties are hypothetical and have been chosen so as to produce k, = 1.98. Parameters of the base
excitation are a, = lcm, Q, = 0.4Hz, and {, = 0.3s™ ..

Fig. 4 plots beam and pendulum response for a base excitation with a, = 1 cm shown in Fig. 4(a). Fig. 4(b)
plots w; response of the beam at the free end. Magnitude of w; is 4 times larger than a,. At the start of motion,
wy is out-of-phase with base motion because w;, > w,. After 7s, w; response attenuates temporarily because of
energy transfer from beam to pendulum. During this time, pendulum motion ¢/. in Fig. 4(c) reaches a
maximum. For 1> 10s, pendulum motion resumes in phase with beam motion raising beam amplitude. During
that short time interval 6 <7< 10s, velocity is reduced also (Fig. 4(d)). It follows that if the pendulum were
arrested during this time interval, the beam might continue its free motion with smaller amplitude.

Fig. 5(a and b) plots response of the beam without pendulum. The w; peak is the same as that with
pendulum (Fig. 4(b)) but does not attenuate near ¢t = 7s. This implies that during this short time interval,
attenuation of w; in Fig. 4(a) is not caused by the time form of base excitation but by the temporary transfer
of energy between beam and pendulum.
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The different stages of response appear in time-snapshots of the beam and pendulum shown in Fig. 6. At the
start of motion, (¢ = 0.5s) the beam is out-of-phase with base motion because w;,>w;. Starting S<t<11s,
pendulum amplitude increases while that of the beam is reduced indicating a temporary transfer of energy. For
12<t<15s, beam amplitude reverts to its original value while pendulum amplitude is reduced.

For an elastic cable, assume E A, = 44.5N and p. = 1.1 g/em®. Prior to coupling cable extensional motion
to the beam, its effect is evaluated based on a prescribed oscillation ¢(¢) = sin(w,?) producing the centrifugal
force (see Eq. (A.6a))

Fo(t) = myl.¢* = myl (1 + cosQaw,1))/2, F.(t) = =2m,l.w?} cos(Qw,t). (38)

Substituting Eq. (33) in Egs. (27)-(30) determines cable response. In the analysis to follow, 25 terms are
included in the modal expansion of Eq. (25).

In Fig. 7(a), peaks of cable extensional displacement u.(/., t) follow those of F, (Eq. (33)) with period n/w,.
Acceleration response (Fig. 7(b)) is modulated by cable extensional modes w,;, j>1 noting that w. > w,.
Incremental cable tension AT, (Fig. 7(c)) resembles acceleration (Fig. 7(b)) indicating that AT, is dominated
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Fig. 4. Beam histories with pendulum: g, = 1cm, ¢,,, = 0.025rad. (a) Wy,s (cm), (b) wy (cm), (c) ¢/, (cm), and (d) dw,/d? (cm/s).
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Fig. 5. Lone beam response: a, = 1 cm; (a) wy (cm) and (b) dwy/d¢ (cm/s).

by cable elastic response and not centrifugal force F.~0.7N. AT, (Fig. 7(c)) rises by more than an order of
magnitude when cable flexibility is included. This is evident when comparing the one-mode approximation
AT.( = F,) (Fig. 7(d)) with that in Fig. 7(c). Finally, shape of AT, in Fig. 7(d) matches that of u. in Fig. 7(a)
because for w <w,; the cable acts as a mass-less spring with stiffness K., = E.A4./I..

Fig. 8(al—cl) plots beam and pendulum response excluding cable flexibility, and Fig. 8(a2-c2) plots
incremental response from cable flexibility. In this example, @, was increased by an order of magnitude to
a, = 10cm from the case in Fig. 4 to magnify the effect of nonlinearity from pendulum swing. Comparing
response in Fig. 8(al and bl) to that in Fig. 8(a2 and b2) reveals that Aw; and AQ,,; are 2 orders of
magnitude smaller than linear response. Fig. 8(cl) shows that pendulum swing ¢l. reaches ¢,,,~0.25rad.
Comparing Fig. 8(b1)—(c2) shows that magnitude of Q. ; =m,l.¢ from pendulum inertia is 1/10 the
incremental cable tension AT,.. However, the dominant frequencies in the AT, response are much higher than
the primary beam dyad w.> w, w,, j>1. Although |AT .| > |Q,.;|, the effect on flexural response of cable
inertia is negligible. This result applies to a class of slender beams and pendulum mass sufficiently smaller than
beam mass.

Fig. 9(b—d) plots response of coupled extensional motions of beam and cable for ¢,,,, = 0.25rad from the
centrifugal force in Fig. 9(a). Fig. 9(b and ¢) shows response of beam displacement u,(/;) and axial force T,(/5)
during the first 5s after start of motion. Note that T} is more than an order of magnitude larger than F,. and
this persists along the beam length as shown in Fig. 9(d) for T}(/,/2). The dominant response frequencies are
high compared to the driving frequency 2w, although response is modulated by that frequency.
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(a) (b) (c) (d) (e)

Fig. 6. Time snapshots of beam—pendulum. (a) t = 0.5s, (b) 1 =2s, (c) t =3s,(d) t=4s,(e) t=5s, () t =65, (g) t =7s, (h) t =8s,
1) t=09s,(G)t=10s, (k) t=11s, () t=12s, (m) =135, (n) = 14s and (0) t = 15s.

5. Conclusion

The effect on response of a beam—pendulum system of cable flexibility is studied adopting modal analysis
and the static—-dynamic superposition method. Since the driving force to cable motions is nonlinear, a time-
delayed method is adopted where cable tension is computed at time step ¢ based on centrifugal force computed
at a previous time step r—Atz. Noteworthy results of this study are:

1. Modal response relies on two non-dimensional parameters: a wave number «, = /,, (m;,wg J(EpL ;,)) 174
mass ratio w, = mply/my,.

and a
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Fig. 7. Cable response from centrifugal force: ¢, = 1rad. (a) u.(l,) (cm), (b) d%u./d* (m/s), (c) AT, (N) (25 terms), and (d) AT,; (N) (1

term).
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Fig. 8. Incremental response from cable inertia: @, = 10cm, ¢,,,, = 0.25rad. (al) wz (cm), (bl) Q..z (N), (cl) ¢ (rad.), (a2) Aw; (cm),
(62) AQyyr (N), and (c2) AT, (N).

2. The two primary modes or dyad influencing response are: a beam dominant mode w; <w, with beam and
pendulum motions in phase, and a pendulum dominant mode w,> w, with beam and pendulum motions
out-of-phase.
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Fig. 9. Coupled beam—cable extensional motions: ¢,,, = 0.25rad. (a) F,, (b) uy(lp), (c) Tp(ly), and (d) Tp(/,/2).

3. In curves of w versus k, with y, as parameter, lines of different modes change path near coalition producing
a change in nature of the mode. The value of k, near coalition is insensitive to y,. Coalition of the primary
dyad occurs near k,~2. Near this value, separation between the 2 frequencies in the dyad is smallest,
affecting the transfer of energy between the 2 modes. The smaller y, is the wider this separation becomes.

4. Unlike vibration absorption achieved when periodic excitation coincides with the auto-parametric
condition, in transient response energy transfer occurs within short time intervals when x,x 2.

5. Incremental cable tension AT, from its flexibility and inertia may be much larger than reaction from
pendulum inertia Q.,;, yet its effect on flexural response is negligible because dominant frequencies in AT,
are much higher than those of the primary dyad.

6. In contrast to flexural response, cable tension has a noticeable effect on extensional motions of the beam,
although response is still dominated by frequencies high compared to w,.

Appendix A. Pendulum equations with moving pivot

Lagrange’s equations are
4oL oL _
drdg; 0g; ’
P, T are potential and kinetic energies and ¢; are generalized coordinates. For the coupled system in Fig.

I(a)

L=T-P. (A.1)

T = (myi* + my(rp)*) /2. (A.2a)

P = mygl.(1 — cos(0)) = mygl, (1 — (1= (r sin(p) — wp)?/2)" 2), (A.2b)

where ¢ is the angle between undeformed beam axis B-A and cable r (B-C) from undeformed free end B to
displaced pendulum mass C (Fig. 1(a)), and 0 the angle between displaced cable B'-C and the vertical. The
pivot moves from B to B’ by a displacement w;. From Fig. 1(a)

rsin(g) = [, sin(0) + wy, (A.3a)
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= lc(l + (sin(0) + wL/zc)2) 2 (A.3b)
i = (I sin(0) + w) (I cos(0)0 + viz) /r, (A.3¢)

i = (I cos(0)0 + WL)z/r
+ (I, sin(0) + WL)(—zc sin(0)0” + 1, cos(0)) + wL) Ir— . (A.3d)

P in Eq. (A.2b) is a function of 8 only because when ¢ = 0, then from Eq. (A.3a) 6 = sin_l(—wL/lc);éO SO
although the mass is motionless along y yet it moves along x by /.(1 — cos(0)) ~ 1092/2. Letting ¢; = r and
¢> = ¢ in Eq. (A.1) using Eq. (A.2) yields

myi — mpr(p2 + m,g tan(0) sin(@) = F,, (A.4a)
mprzq'b + 2m,rigp 4+ mpgr tan(0) cos(@) = rky. (A.4b)
Linearizing Eq. (A.3) gives
o~0+wr/l,

ral.+o0(l.0%), i~o(l.0%), ¥~ ol.0. (A.5)
This reduces Eq. (A.4) to
myl (/1. — o* + 02p(e — w /1)) = F,, (A.6a)
myl(p + (¢ —wr /1)) = Fo. (A.6b)
The reaction F, along y at the pendulum pivot is
Fy,=myl.p. (A7)
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