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Abstract

The effect on beam–pendulum response of cable flexibility is studied. The system is forced at its base by a prescribed

damped periodic oscillation. Response from cable tension is estimated at a delayed time step from known variables

computed at a previous time step in a linear modal analysis. The effects of base excitation and force from cable flexibility

are included adopting the static–dynamic superposition method. Two distinct non-dimensional parameters ko and mr,

control the linear modal response of beam and pendulum. Unlike periodic excitation where the pendulum may be used as

an absorber of energy, in transient response the conditions leading to absorption do not apply. Even for large pendulum

swings, cable flexibility has a negligible effect on flexural response considering that cable tension dominated by high

frequencies is larger than the shear force QxxL it transmits at the beam-free end. Contrary to its effect on flexure, cable

flexibility induces a high-frequency axial force comparable to QxxL.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The model of a flexible beam coupled to a pendulum is often considered as an approximation to large
flexible structures with an appendage. Crespo et al. [1] studied the effect of approximations on the dynamic
response of a cantilever with tip mass. Cuvalci [2] and Ertas and Cuvalci [3] studied the nonlinear absorber
with varying orientation. Yaman et al. [4] studied a cantilever beam with tip-mass and pendulum adopting
finite elements. For sinusoidal excitation, energy transfer between beam and pendulum is largest at the auto-
parametric condition, implying that the pendulum may act as a vibration absorber. Yaman and Sen [5] and
Yaman and Sen [6] treated the same problem simplifying the beam–pendulum to a 2-degree-of-freedom
oscillator to investigate the effect of pendulum orientation on its effectiveness as a vibration absorber. Cicek
and Ertas [7] studied experimentally the coupled system under random excitation. Dumas et al. [8] studied
experimentally the performance of a 3-stage low-frequency vibration isolation chain made of vertical Euler-
spring and a self-damped pendulum. Mikhlin and Reshetnikova [9] studied the nonlinear 2-degree-of-freedom
system of a massive linear oscillator and a light nonlinear oscillator acting as an absorber to the former
adopting nonlinear normal modes. Oguamanan et al. [10] and Oguamanan and Hansen [11] studied the
dynamic response of an overhead crane system. Ju et al. [12] studied linear dynamic response of tower cranes
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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coupled with the pendulum motions of the payload adopting finite elements for the tower crane and rigid-
body kinetics for the pendulum. Their analysis concludes that the lowest tower and pendulum modes
dominate response, and that nonlinearity is week for planar pendulum motions. Yang et al. [13] studied the
dynamics of a slewing flexible beam attached to a pendulum.

All references above treat linear and nonlinear periodic motions. The present study considers transient
response of a vertical cantilever beam–pendulum system from prescribed base motion adopting a modal
decomposition. Prescribed motion at the base is included utilizing the static–dynamic superposition method
[14,15]. Modal response relies on two non-dimensional parameters: a beam wave number ko ¼

lbðmbo2
o=ðEbIbÞÞ

1=4 and a mass ratio mr ¼ mblb/mp, where EbIb is flexural stiffness, lb is length, mb is mass
per unit length, and mp, oo are pendulum mass and frequency. Curves of system resonances versus ko with mr

as parameter reveal the strong influence the first 2 modes have on response. The lowest of this dyad is a beam
dominant mode with frequency below oo, while the second is a pendulum dominant mode with frequency
above oo. Unlike periodic excitation where the pendulum may be used as an absorber of energy, in transient
response the conditions leading to absorption do not apply.

For long slender beams, the effect of cable flexibility and inertia is evaluated adopting a time-delayed
method. Since the driving force of these motions along the cable is the nonlinear centrifugal force, response of
the cable is computed at some time step t based on the centrifugal force determined from a previous time step
t�Dt. This time-delayed cable tension then acts as an external concentrated body force at the beam-free end,
appearing as an inhomogeneity in the beam equation of motion. The effect on beam extensional response of
cable flexibility is then evaluated by solving the coupled beam–cable extensional equations from a time-
delayed centrifugal excitation.

2. Coupled beam–pendulum

The 1-D Euler equations and boundary conditions of a cantilever beam with a pendulum pivoted at its free
end are (see Fig. 1(a) and Appendix A):

EbIbqxxxxwþmb €w ¼ poðx; tÞ; �lb=2pxplb=2, (1a)

w0 ¼ 0; w00 ¼ 0; w0 � wð�lb=2Þ, (1b)

w00L ¼ 0; EbIbw000L ¼ mplp €j; wL � wðlb=2Þ, (1c)
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Fig. 1. Geometry of beam–pendulum: (a) clamped beam on fixed base and (b) clamped beam on moving base.
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€jþ o2
oj ¼ o2

owL=lc; oo ¼
ffiffiffiffiffiffiffiffiffi
g=lc

p
, (1d)

where ( � ) is derivative w.r.t. time t, x the axial coordinate, ( )0 is derivative w.r.t. x, lb the beam length,
Eb, Ib are Young’s modulus and cross-sectional moment of inertia, mb the mass per unit length, w the
lateral displacement, j the angle between undeformed beam axis B–A and radial vector r along (B–C)
from the undeformed free end B to the displaced pendulum mass C (Fig. 1(a)), g the acceleration of
gravity, lc the length of the inextensional massless cable, mp the pendulum mass, and po(x, t) the applied
lateral distributed load per unit length. Boundary conditions (1b) apply to clamping at the fixed base,
while boundary conditions (1c) apply to the free end connected to a pendulum whose motion is governed
by Eq. (1d). For harmonic motions in time with radian frequency o, the homogeneous Eqs. (1a) and (1d)
admit a solution

w ¼ eîot
X4
n¼1

Ane
knx; k1;2 ¼ �îk̂; k3;4 ¼ �k̂; î ¼

ffiffiffiffiffiffiffi
�1
p

, (2a)

k̂lb ¼ k ¼ lb mbo2=ðEbIbÞ
� �1=4

¼ k̂olb ~o1=2, (2b)

k̂olb ¼ lb mbo2
o=ðEbIbÞ

� �1=4
; ~o ¼ o=oo

j ¼ eîotwL= lcð1� ~o2Þ
� �

. ð2cÞ

This reduces the second boundary condition in Eq. (1c) to

ð1� ~o2Þðmblb=mpÞ=ðk̂olb ~o1=2Þw000L =k̂
3
þ wL ¼ 0. (3)

It is clear from Eqs. (2) and (3) that there are 3 distinct non-dimensional parameters controlling free
dynamic motion

ko ¼ k̂olb ¼ lb mbo2
o=ðEbIbÞ

� �1=4
) k̂lb ¼ k ¼ ko ~o1=2, (4a)

mr ¼ mblb=mp, (4b)

~o ¼ o=oo (4c)

for wave number, mass, and frequency, respectively. Substituting Eq. (2) in Eqs. (1b) and (1c) yields the
eigenproblem

MA ¼ 0; A ¼ fA1;A2;A3;A4g
T ) det jMj ¼ 0,

M ¼

e�a1 e�a2 e�a3 e�a4

~k1e
�a1 ~k2e

�a2 ~k3e
�a3 ~k4e

�a4

~k
2

1e
a1 ~k

2

2e
a2 ~k

2

3e
a3 ~k

2

4e
a4

ðb ~k
3

1 þ 1Þea1 ðb ~k
3

2 þ 1Þea2 ðb ~k
3

3 þ 1Þea3 ðb ~k
3

4 þ 1Þea4

2
6666664

3
7777775
,

an ¼ knlb=2; ~kn ¼ kn=k̂; b ¼ ð1� ~o2Þmr=ðko ~o1=2Þ. ð5Þ

Eq. (5) determines the eigenset {oj, cj(x)}. Forced response from po(x, t) proceeds adopting the modal
expansion

wðx; tÞ ¼
X

j

ajðtÞcjðxÞ. (6)



ARTICLE IN PRESS
M. El-Raheb / Journal of Sound and Vibration 307 (2007) 834–848 837
where aj(t) are generalized coordinates. Substituting Eq. (6) in Eq. (1a) and enforcing orthogonality of cj

yields

€ajðtÞ þ o2
j ajðtÞ ¼ ~NfjðtÞ; ~Nfj ¼ NfjðtÞ=Njj,

NfjðtÞ ¼

Z lb=2

�lb=2
poðx; tÞcjðxÞdx,

Njj ¼ mb

Z lb=2

�lb=2
c2

j ðxÞdxþmp cjðlb=2Þ=ð1� ~o2
j Þ

� �2
. ð7Þ

A po(x, t) in the form

poðx; tÞ ¼ Hðx� x1Þ �Hðx� x2Þð Þf ðtÞ (8)

simplifies Nfj in Eq. (7) to Nfj(t) ¼ f(t)Npj where Npj ¼
R x2

x1
cjðxÞdx and H(x) is the Heaviside function. Eq. (7)

then admits the solution

ajðtÞ ¼ Apj sinðoj tÞ þ Bpj cosðoj tÞ þ Npj=ðNjjojÞ
� � Z t

0

f ðtÞ sin ojðt� tÞ
� �

dt. (9)

Constants Apj, Bpj are determined from the initial conditions wðx; 0Þ; _wðx; 0Þ.
If the base moves laterally with prescribed displacement we(t) (see Fig. 1(b)) with po(x, t) ¼ 0, the method of

static–dynamic superposition is employed. w(x, t) is expressed as the sum of a dynamic solution wd(x, t)
satisfying homogeneous boundary conditions and a static solution ws(x) satisfying inhomogeneous boundary
conditions:

wðx; tÞ ¼ wdðx; tÞ þ wsðxÞf ðtÞ, (10)

where f(t) is time dependence of the displacement prescribed at the base. Consequently, wd(x, t) satisfies the
same boundary conditions as in Eqs. (1b) and (1c) at both ends:

wd0 ¼ 0; w0d0 ¼ 0; wd0 � wd ð�lb=2Þ, (11a)

w00dL ¼ 0; EbIbw000dL ¼ mplp €j; wdL � wdðlb=2Þ. (11b)

ws(x) satisfies the static equation

qxxxxws ¼ 0 (12)

with boundary conditions

ws0 ¼ 1; w0s0 ¼ 0; ws0 � wsð�lb=2Þ, (13a)

w00sL ¼ 0; w000sL ¼ 0; wsL � wsðlb=2Þ. (13b)

Solving Eq. (12) with boundary conditions Eq. (13) yields

wsðxÞ ¼ 1. (14)

Eq. (14) specifies a rigid body translation.
Expanding wd(x, t) in its eigenfunctions cj(x) following the same steps that lead to Eq. (5):

wd ðx; tÞ ¼
X

j

ajðtÞcjðxÞ; cjðxÞ ¼
X4
n¼1

Anje
knjx; �lb=2pxplb=2. (15)

In Eq. (15), knj is defined in Eq. (2a) for the jth eigenfunction. Substituting Eq. (9) in the homogeneous form
of Eq. (1a) and enforcing orthogonality of cj(x) produces

€ajðtÞ þ o2
j ajðtÞ ¼ � ~Nbj

€f ðtÞ,

~Nbj ¼ ðNbj=NjjÞ; Nbj ¼ mb

Z lb=2

�lb=2
wsðxÞcjðxÞdx � mb

Z lb=2

�lb=2
cjðxÞdx. ð16Þ
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Njj is defined in Eq. (7). The solution to Eq. (16) takes the form

ajðtÞ ¼ Aj sinðoj tÞ þ Bj cosðoj tÞ � ð ~Nbj=ojÞ

Z t

0

€f ðtÞ sin ojðt� tÞ
� �

dt. (17)

Constants Aj, Bj are determined from the initial conditions

wðx; 0Þ ¼ 0; _wðx; 0Þ ¼ 0. (18)

Substituting Eq. (9) in Eq. (18) yields

Aj ¼ �ð ~Nbj=ojÞ
_f ð0Þ; Bj ¼ � ~Nbjf ð0Þ. (19)

For a base undergoing damped periodic motions of the form

f ðtÞ ¼ abe
�zbt sinðobtÞ½HðtÞ �Hðt� tsÞ�, (20a)

_f ðtÞ ¼ abe
�zbt ob cosðobtÞ � zb sinðobtÞð Þ, (20b)

€f ðtÞ ¼ abe
�zbt o2

j � z2b
� �

sinðobtÞ þ 2zboj cosðobtÞ
h i

, (20c)

then f(0) ¼ 0 and _f ð0Þ ¼ abob.

3. Cable flexibility

For a long elastic cable and large mp, the effect on transmitted force at the pivot from extensional motions
of the cable is considered. These motions are driven by the nonlinear centrifugal force from pendulum sway
(see Appendix A, Eq. (A.4a)). Coupling of cable flexibility to beam flexure is presented first, followed by
coupling to beam extension.

3.1. Coupling to beam flexure

To include this effect in the linear flexural treatment of Section 1, a time-delayed approximation is adopted
in the integration of the generalized coordinates Eq. (16). Consider an elastic cable fixed at the pivot end and
attached to the mass mp at its other end. The cable extentional equation of motion and boundary conditions
are

EcAcqrruc þ rcAcqttuc ¼ 0; 0prplc,

ucð0; tÞ ¼ 0; EcAcqrucðlc; tÞ þmpqttucðlc; tÞ ¼ F cðtÞ � mplc _j2, ð21Þ

where r is the coordinate along the cable, Ec, rc, Ac are cable modulus, density and cross-sectional area, uc is
elastic displacement, and Fc is centrifugal force. To solve Eq. (21), apply the static–dynamic superposition
procedure utilized in Section 1. Express uc(r, t) as the sum of a dynamic solution ucd(r, t) and a static solution
ucs(r)

ucðr; tÞ ¼ ucd ðr; tÞ þ ucsðrÞF cðtÞ,

ucd ð0; tÞ ¼ 0; EcAcqrucd ðlc; tÞ þmpqttucd ðlc; tÞ ¼ 0,

ucsð0Þ ¼ 0; EcAcqrucsðlcÞ ¼ 1. ð22Þ

For harmonic motions in time with frequency o, the solution to ucd and dispersion relation satisfying Eq.
(22) are:

ucd ðr; tÞ ¼ sinðkcrÞeîot; kc ¼ o=cc; cc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ec=rc

p
,

ðEcAc=mplcÞ cosðkclcÞ � o2 sinðkclcÞ ¼ 0. ð23Þ

The solution to ucs is

ucsðrÞ ¼ r=ðEcAcÞ. (24)
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Expanding ucd in its eigenfunctions

ucd ðr; tÞ ¼
X

j

acjðtÞccjðrÞ; ccjðrÞ ¼ sinðkcjrÞ, (25)

then substituting Eqs. (22)–(25) in Eq. (21) yields

€acjðtÞ þ o2
cjaðtÞ ¼ �

~Ncbj
€F cðtÞ; ~Ncbj ¼ ðNcbj=NcjjÞ,

Ncbj ¼ rcAc

Z lc

0

ucsðrÞccjðrÞdr; Ncjj ¼ rcAc

Z lc

0

c2
cjðrÞdrþmpc

2
cjðlcÞ. ð26Þ

The solution to Eq. (26) takes the form

acjðtÞ ¼ Acj sinðocjtÞ þ Bcj cosðocjtÞ � ð ~Ncbj=ocjÞ

Z t

0

€FcðtÞ sin ocjðt� tÞ
� �

dt. (27)

Constants Acj, Bcj are determined from the initial conditions

ucðr; 0Þ ¼ 0; _ucðr; 0Þ ¼ 0. (28)

Substituting Eq. (22) in Eq. (28), with use made of Eq. (24) and Eq. (25) yields

Acj ¼ �ð ~Ncbj=ocjÞ _F cð0Þ; Bcj ¼ � ~NcbjF cð0Þ. (29)

The incremental dynamic tension in the cable follows:

DTcðr; tÞ ¼ EcAc

X
j

acjðtÞc
0
cjðrÞ þ FcðtÞ. (30a)

In turn, the incremental shear force at the pivot is

DQxxcðtÞ ¼ DTcð0; tÞjðtÞ. (30b)

Since DQxxc is a nonlinear function of j, it can be included in the linear analysis assuming that DQxxc is a
known external body force from an earlier time step t�Dt during the numerical integration. This means that in
Eq. (1a) the body force po(x, t) at time step t is related to DQxxc by

poðx; tÞ ¼ dðx� lb=2ÞDQxxcðt� DtÞ. (31)

d(x) is Dirac’s delta function. This adds a term to the particular integral of Eq. (17) similar to the one in Eq.
(9) as follows:

ajðtÞ ¼ Aj sinðoj tÞ þ Bj cosðoj tÞ � ð ~Nbj=ojÞ

Z t

0

€f ðtÞ sin ojðt� tÞ
� �

dt

þ cjðlb=2Þ=ðNjjojÞ

� �Z t�Dt

0

DQxxcðtÞ sin ojðt� tÞ
� �

dt. ð32Þ

3.2. Coupling to beam extension

The coupled extensional equations of beam and cable are:

EbAbqxxub � rbAbqttub ¼ 0; 0pxplb, (33a)

EcAcqrruc � rcAcqttuc ¼ 0; 0prplc, (33b)

ubð0; tÞ ¼ 0, (33c)

ubðlb; tÞ ¼ ucð0; tÞ, (33d)

EbAbqxubðlb; tÞ ¼ EcAcqrucð0; tÞ, (33e)

EcAcqrucðlc; tÞ þmpqttucðlc; tÞ ¼ F cðtÞ. (33f)
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Eqs. (33a) and (33b) are the extensional equations for beam and cable, respectively, where x is a coordinate
along the beam with origin at the fixed end, r is coordinate along the cable with origin at the pivot x ¼ lb, rb,
Ab are beam density and cross-sectional area, and ub, uc are axial displacements of beam and cable. Eq. (33c) is
beam fixed end condition, Eqs. (33d) and (33e) are continuity of displacement and axial force at the
beam–cable junction, and Eq. (33f) is dynamic equilibrium of pendulum mass and cable tension forced by Fc(t)
the centrifugal force along r from pendulum swing.

For harmonic motions in time with radian frequency o, the solutions to Eqs. (33a) and (33b)) satisfying
Eqs. (33c)–(33e) are:

ubðx; tÞ ¼ c1 sinðkebxÞeîot; keb ¼ o=ceb; ceb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb=rb

p
,

ucðr; tÞ ¼ c3 sinðkecrÞ þ c4 cosðkecrÞð Þeîot; kec ¼ o=cec; cec ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Ec=rc

p
,

c3 ¼ c1 sinðkeblbÞ; c4 ¼ c1bc cosðkeblbÞ; be ¼ EbAbcec=ðEcAccebÞ. ð34Þ

Substituting Eq. (34) in Eq. (33f) yields the dispersion relation

aeðbecsbcsc � snbsncÞ � ðbecsbsnc þ snbcscÞ ¼ 0; ae ¼ EcAckec=ðmpo2Þ, (35)

where cs, sn stand for cos and sin while subscripts b and c stand for (keblb) and (keclc). Eq. (35) determines the
eigenset fcebðxÞ;cecðrÞ;oecgj.

Since Fc(t) is an inhomogeneity in boundary condition Eq. (33f), express ub and uc as

ubðx; tÞ ¼
X

j

aejðtÞcebjðxÞ þ ubsðxÞFcðtÞ,

ucðr; tÞ ¼
X

j

aejðtÞcecjðrÞ þ ucsðrÞFcðtÞ,

ubsðxÞ ¼ x=EbAb; ucsðrÞ ¼ lb=EbAb þ r=EcAc. ð36Þ

ubs and ucs are static solutions satisfying the inhomogeneous boundary condition Eq. (33d) with Fc ¼ 1.
Substituting Eq. (36) in Eqs. (33a) and (33b) and enforcing orthogonality of the eigenfunctions determines
equations in aej(t) with solution

aejðtÞ ¼ Aej sinðoecjtÞ þ Bej cosðoecjtÞ � Nebj=ðNejjoecjÞ
� � Z t

0

€FcðtÞ sin oecjðt� tÞ
� �

dt,

Nebj ¼ rbAb

Z lb

0

ubsðxÞcebjðxÞdxþ rcAc

Z lc

0

ucsðrÞcecjðrÞdr,

Nejj ¼ rbAb

Z lb

0

c2
ebjðxÞdxþ rcAc

Z lc

0

c2
ecjðrÞdrþmpc

2
ecjð0Þ,

Aej ¼ � ðNebj=NejjÞ _Fcð0Þ=oecj ; Bej ¼ �ðNebj=NejjÞF cð0Þ. ð37Þ
4. Results

Fig. 2 plots the first 3 modes of the clamped beam for mr ¼ 50 and ko ¼ 1.98. Note that only the first two
resonances include motions of the pendulum. The first mode describes a pendulum dominant motion wp that is
in phase with the beam w. The second mode describes a w-dominant motion that is out-of-phase with wp. This
mode dyad exists independent of mr and ko. Starting with the third mode, the pendulum mass is almost
motionless and the beam motion is the same as that of the lone beam. Consequently, the effect on response of
the pendulum is primarily from the first mode dyad.

Fig. 3 plots the non-dimensional modal variables with wave number parameter ko for the first 3 modes and
for 2 values of mr: 50 and 5. For small ko, ~o1 � 1 while ~o2 drops smoothly till koE2 near the coalescence of
these 2 lines (Fig. 3(a1)). At that stage, the ~o1 line changes path following that of the ~o2 line and continues
dropping smoothly with ko, while the ~o2 line changes its path to that of the ~o1 line close to ~o2 � 1.
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(a) (b) (c)

Fig. 2. Mode shapes: mr ¼ 50, ko ¼ 1.98; (a) mode 1 o1/o0 ¼ 0.81, (b) mode 2 o2/o0 ¼ 1.11, and (c) mode 3 o3/o0 ¼ 5.61.
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This change in path and the nature of the mode are repeated when the ~o3 and ~o2 lines approach their
coalescence at koE4.5. The reason for this change in path near coalescence stands on the uniqueness of the
linear eigenstates insuring that different eigenfunctions cannot have the same frequency. Near coalescence of
~o1 and ~o2, the frequency separation between these 2 resonances is smallest and this condition may affect
forced response by enabling energy transfer between the 2 modes.

Fig. 3(b1) plots k/p for the first 3 modes. For small ko, the k1 line rises almost linearly then changes path
near coalescence with the k2 line then follows a constant value of 0.6, the first cantilever mode of the lone
beam. At this point, the k2 line continues along the k1 line before coalescence, till it approaches coalescence
with the k3 line, and then follows a constant value of 1.5, the second cantilever mode of the lone beam.

Fig. 3(c1) plots wL/wmx. Note the smooth transition of the second mode line from +1 to �1 prior to the
second coalescence point. Fig. 3(d1) plots log10(jlp/wmx). Note that the first and second lines intersect near the
first coalescence, while the second and third lines intersect near the second coalescence. Near these points,
pendulum amplitude of the first dyad achieves a minimum.

Fig. 3(a2–d2) plots the non-dimensional variables for mr ¼ 5. Comparing corresponding lines for the two
mr’s reveals a similar behavior except that for mr ¼ 5, separation between the lines near coalescence is wider,
and log10(jlc/wmx) near the first coalescence is smaller (see Fig. 3(a2) and (d2)).

Since modal variables are unique near koE2, properties leading to that value are considered in the example
to follow:

EbIb ¼ 57:4Nm2; lb ¼ lc ¼ 5m; mb ¼ 0:7 kg=m; mp ¼ 0:07 kg:

These properties are hypothetical and have been chosen so as to produce ko ¼ 1.98. Parameters of the base
excitation are ab ¼ 1 cm, Ob ¼ 0.4Hz, and zb ¼ 0.3 s�1.

Fig. 4 plots beam and pendulum response for a base excitation with ab ¼ 1 cm shown in Fig. 4(a). Fig. 4(b)
plots wL response of the beam at the free end. Magnitude of wL is 4 times larger than ab. At the start of motion,
wL is out-of-phase with base motion because ob4o1. After 7 s, wL response attenuates temporarily because of
energy transfer from beam to pendulum. During this time, pendulum motion jlc in Fig. 4(c) reaches a
maximum. For t410 s, pendulum motion resumes in phase with beam motion raising beam amplitude. During
that short time interval 6oto10 s, velocity is reduced also (Fig. 4(d)). It follows that if the pendulum were
arrested during this time interval, the beam might continue its free motion with smaller amplitude.

Fig. 5(a and b) plots response of the beam without pendulum. The wL peak is the same as that with
pendulum (Fig. 4(b)) but does not attenuate near t ¼ 7 s. This implies that during this short time interval,
attenuation of wL in Fig. 4(a) is not caused by the time form of base excitation but by the temporary transfer
of energy between beam and pendulum.



ARTICLE IN PRESS

0

1

2

-1

0

1

2

0

1

-1

κ/
π

w
L
 /

w
m

x

0 4 6

κο κο

μr=50 μr=5

mode 1

2

3

mode 1

mode 1, 2, 3

2

3

2

1, 3

(a1)

(b1)

(c1)

lo
g

1
0
(ω

)
~

0

1

-1

-2

lo
g

1
0
(φ

l p
 /

w
m

x)

mode 1

2
3

(d1)2

0 4 6

mode 1

2

3

mode 1

mode 1, 2, 3

2

3

2 3

1, 3

(a2)

(b2)

(c2)

mode 1

2 3

(d2)

1

22

Fig. 3. Variation of non-dimensional variables with ko: (a1)–(d1) mr ¼ 50, (a2)–(d2) mr ¼ 5. , mode 1; , mode 2;

, mode 3.

M. El-Raheb / Journal of Sound and Vibration 307 (2007) 834–848842
The different stages of response appear in time-snapshots of the beam and pendulum shown in Fig. 6. At the
start of motion, (t ¼ 0.5 s) the beam is out-of-phase with base motion because ob4o1. Starting 5oto11 s,
pendulum amplitude increases while that of the beam is reduced indicating a temporary transfer of energy. For
12oto15 s, beam amplitude reverts to its original value while pendulum amplitude is reduced.

For an elastic cable, assume EcAc ¼ 44.5N and rc ¼ 1.1 g/cm3. Prior to coupling cable extensional motion
to the beam, its effect is evaluated based on a prescribed oscillation j(t) ¼ sin(oot) producing the centrifugal
force (see Eq. (A.6a))

FcðtÞ ¼ mplc _j2 ¼ mplc 1þ cosð2ootÞð Þ=2; €F cðtÞ ¼ �2mplco4
o cosð2ootÞ. (38)

Substituting Eq. (33) in Eqs. (27)–(30) determines cable response. In the analysis to follow, 25 terms are
included in the modal expansion of Eq. (25).

In Fig. 7(a), peaks of cable extensional displacement uc(lc, t) follow those of Fc (Eq. (33)) with period p/oo.
Acceleration response (Fig. 7(b)) is modulated by cable extensional modes ocj, jX1 noting that oc1boo.
Incremental cable tension DTc (Fig. 7(c)) resembles acceleration (Fig. 7(b)) indicating that DTc is dominated
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Fig. 4. Beam histories with pendulum: ab ¼ 1 cm, fmx ¼ 0.025 rad. (a) wbase (cm), (b) wL (cm), (c) flp (cm), and (d) dwL/dt (cm/s).
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Fig. 5. Lone beam response: ab ¼ 1 cm; (a) wL (cm) and (b) dwL/dt (cm/s).
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by cable elastic response and not centrifugal force FcE0.7N. DTc (Fig. 7(c)) rises by more than an order of
magnitude when cable flexibility is included. This is evident when comparing the one-mode approximation
DTc1( ¼ Fc) (Fig. 7(d)) with that in Fig. 7(c). Finally, shape of DTc1 in Fig. 7(d) matches that of uc in Fig. 7(a)
because for o5oc1 the cable acts as a mass-less spring with stiffness Kc1 ¼ EcAc/lc.

Fig. 8(a1–c1) plots beam and pendulum response excluding cable flexibility, and Fig. 8(a2–c2) plots
incremental response from cable flexibility. In this example, ab was increased by an order of magnitude to
ab ¼ 10 cm from the case in Fig. 4 to magnify the effect of nonlinearity from pendulum swing. Comparing
response in Fig. 8(a1 and b1) to that in Fig. 8(a2 and b2) reveals that DwL and DQxxL are 2 orders of
magnitude smaller than linear response. Fig. 8(c1) shows that pendulum swing jlc reaches jmxE0.25 rad.
Comparing Fig. 8(b1)–(c2) shows that magnitude of QxxL ¼ mplc €j from pendulum inertia is 1/10 the
incremental cable tension DTc. However, the dominant frequencies in the DTc response are much higher than
the primary beam dyad ocjbo1, o2, jX1. Although jDTcj � jQxxLj, the effect on flexural response of cable
inertia is negligible. This result applies to a class of slender beams and pendulum mass sufficiently smaller than
beam mass.

Fig. 9(b–d) plots response of coupled extensional motions of beam and cable for jmx ¼ 0.25 rad from the
centrifugal force in Fig. 9(a). Fig. 9(b and c) shows response of beam displacement ub(lb) and axial force Tb(lb)
during the first 5 s after start of motion. Note that Tb is more than an order of magnitude larger than Fc and
this persists along the beam length as shown in Fig. 9(d) for Tb(lb/2). The dominant response frequencies are
high compared to the driving frequency 2oo although response is modulated by that frequency.
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Fig. 6. Time snapshots of beam–pendulum. (a) t ¼ 0.5 s, (b) t ¼ 2 s, (c) t ¼ 3 s, (d) t ¼ 4 s, (e) t ¼ 5 s, (f) t ¼ 6 s, (g) t ¼ 7 s, (h) t ¼ 8 s,

(i) t ¼ 9 s, (j) t ¼ 10 s, (k) t ¼ 11 s, (l) t ¼ 12 s, (m) t ¼ 13 s, (n) t ¼ 14 s and (o) t ¼ 15 s.
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5. Conclusion

The effect on response of a beam–pendulum system of cable flexibility is studied adopting modal analysis
and the static–dynamic superposition method. Since the driving force to cable motions is nonlinear, a time-
delayed method is adopted where cable tension is computed at time step t based on centrifugal force computed
at a previous time step t�Dt. Noteworthy results of this study are:
1.
 Modal response relies on two non-dimensional parameters: a wave number ko ¼ lb mbo2
o=ðEbIbÞ

� �1=4
and a

mass ratio mr ¼ mblb=mp.
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2.
 The two primary modes or dyad influencing response are: a beam dominant mode o1ooo with beam and
pendulum motions in phase, and a pendulum dominant mode o24oo with beam and pendulum motions
out-of-phase.
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3.
 In curves of o versus ko with mr as parameter, lines of different modes change path near coalition producing
a change in nature of the mode. The value of ko near coalition is insensitive to mr. Coalition of the primary
dyad occurs near koE2. Near this value, separation between the 2 frequencies in the dyad is smallest,
affecting the transfer of energy between the 2 modes. The smaller mr is the wider this separation becomes.
4.
 Unlike vibration absorption achieved when periodic excitation coincides with the auto-parametric
condition, in transient response energy transfer occurs within short time intervals when koE2.
5.
 Incremental cable tension DTc from its flexibility and inertia may be much larger than reaction from
pendulum inertia QxxL, yet its effect on flexural response is negligible because dominant frequencies in DTc

are much higher than those of the primary dyad.

6.
 In contrast to flexural response, cable tension has a noticeable effect on extensional motions of the beam,

although response is still dominated by frequencies high compared to oo.

Appendix A. Pendulum equations with moving pivot

Lagrange’s equations are

d

dt

qL

q _qi

�
qL

qqi

¼ 0; L ¼ T � P. (A.1)

P, T are potential and kinetic energies and qi are generalized coordinates. For the coupled system in Fig.
1(a)

T ¼ mp _r
2 þmpðr _jÞ

2
� ��

2, (A.2a)

P ¼ mpglc 1� cosðyÞð Þ ¼ mpglc 1� 1� ðr sinðjÞ � wLÞ
2=l2c

� �1=2� �
, (A.2b)

where j is the angle between undeformed beam axis B–A and cable r (B–C) from undeformed free end B to
displaced pendulum mass C (Fig. 1(a)), and y the angle between displaced cable B0–C and the vertical. The
pivot moves from B to B0 by a displacement wL. From Fig. 1(a)

r sinðjÞ ¼ lc sinðyÞ þ wL, (A.3a)
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r ¼ lc 1þ sinðyÞ þ wL=lc

� �2� �1=2
, (A.3b)

_r ¼ lc sinðyÞ þ wLð Þ lc cosðyÞ_yþ _wL

� ��
r, (A.3c)

€r ¼ lc cosðyÞ_yþ _wL

� �2.
r

þ lc sinðyÞ þ wLð Þ �lc sinðyÞ_y
2
þ lc cosðyÞ€yþ €wL

� �
=r� _r2=r. ðA:3dÞ

P in Eq. (A.2b) is a function of y only because when j ¼ 0, then from Eq. (A.3a) y ¼ sin�1ð�wL=lcÞa0 so
although the mass is motionless along y yet it moves along x by lc 1� cosðyÞð Þ � lcy

2=2. Letting q1 ¼ r and
q2 ¼ j in Eq. (A.1) using Eq. (A.2) yields

mp €r�mpr _j2 þmpg tanðyÞ sinðjÞ ¼ Fr, (A.4a)

mpr2 €jþ 2mpr_r _jþmpgr tanðyÞ cosðjÞ ¼ rFy. (A.4b)

Linearizing Eq. (A.3) gives

j � yþ wL=lc,

r � lc þ oðlcy
2
Þ; _r � oðlcy

2
Þ; €r � oðlcy

2
Þ. ðA:5Þ

This reduces Eq. (A.4) to

mplc €r=lc � _j2 þ o2
ojðj� wL=lcÞ

� �
¼ Fr, (A.6a)

mplc €jþ o2
oðj� wL=lcÞ

� �
¼ F y. (A.6b)

The reaction Fy along y at the pendulum pivot is

Fy ¼ mplc €j. (A.7)
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